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P. Jeffrey Hay
Harold W. Galbraith
Theoretical Division
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Los Alamos, NM 87545

ABSTRAC
There are many problems important to the theoretical
chemist which, if implemented in their full complexity, would
strain the capabilities of today's most powerful computers. Sev-
eral such problems are now being implemented on the CRAY-1 com-
puter at Los Alamos. Examples of these problems will be taken
from the fields of moleclar electronic structure calculations,

quantum reactive scattering calculations, and quantum optics.



I. INTRODUCTION

The electronic computer is undeniably an essential component in
the tool beg of the modern theoretical chemi:t and, with ever improved
accessibilty to more powerful computing, it is tempting tc feel a sense
of euphoria about current computer capabilities. At Los Alamos, we have
a truly impressive resource of large computers -- at present we have a
choice of two l-million word CRAY machines aad four CDC 7600 machines.
However, even with this powerful a computing enviroument, the main
objective of this talk is to ask whether or not this current euphoria
is really justified. Have we yet reached the stage where we can, with
current computers, address problems which are traditionally chought of
as chemistry? The answer is, in many cases, no.

In this talk, we survey three areas of theoretical chemistiy which
receive considerable attention at the Theoretical Chemistr; and Molecular
Physics Group at Los Alamos. These three sreas are (1) molecular elen-
tronic structure calculations, (2) chemical dynamics calculations, and
(3) quantum optics and spectroscopy. In intreducing each category, we
will note the types of mathematical algorithms used to solve problems
typical of each aresa. We tnen present examples of types of calculations
which we feel are at the curient state-of-the-art, Finally, we will pre~
sent a wish list of problems in each category which w~ would like to be
able to study, but are simply beyond current computing capabilities.

The program of this symposium makes it clear that there will be
several talks to follow which will concentrate specifically on pcoblems
agsociated with electronic structure calculations -- we will only skim
over the subject for now. We will concentrate more heavily on problems

in chemical dynamics, and conclude with problems in quantum optics.



II. MOLECULAR ELECTRONIC STRUCTURE CALCULATIONS

In determining the quancum mechanical structure of a molecule,
there are three major steps (roughly equal in difficulty) to be attacked
computaticnally (See Fig. 1.). We first define a set of atomic basis
functions centered at each nucleus and then compute a large number of
integrals over these basis functions. This information feeds into the
construction of the Fock matrix, The eigenvalues of the Fock matrix are
associated with the total energy of the system. The eigenvectors define
the occupied orbitals of the system and the eigenvalues define the
orbital energies. This information is used to construct a new Fock
matrix, which is again diagonalized. This procedure is repeated inter-
atively urtll the total energy of the system is minimized and the orbi-
tals are constant from one iteration to the next.

Reasonable determinations of molecular structure cen be nbtained at
this SCF-level of calculation. However, for an accurate determination
of the structure and properties of molecules, correlations between the
motions of the many electrons of the system must be included. To do
this, many-electron wavefunctions are computed using sums of products of
these onc-electron orbitals. This process is the configuration inter-
action (CI) method; getting accurate CI wavefunctions ~nd energies
requires an enormously large basis of SCF functions. The Hamiltonian
matrix in this basis 1s constructed and diagonalized to get the accurate
Cl wavefunctions and energies, The CI matrix tends to be both very
large and very sparse, Efficient computer codes must take i=to account
the sparsity of the CI matrix both in its construction and diagonali-

zation phase.



Let's turn our attention té the computational needs of the structure
problem (See Fig. 2). Defining n as the number of atomic basis functions
employed, there are several characteristic matrices to consider. The
Fock matrix, which we repeatedly construct and diagonalize until con-
vergence, is only an n x n matrix; unfortunately, to construct this
matrix at each iteration of the SCF procedure, we have to process the
n4/8 two-electron integrals. At the current state of the art, the number
of atomic basis functions n tends to be about 100. This limitation is
not so much because of the difficulty of diagonalizing 100 x 100 matrices,
but because of the IO limitations inherent with processing the tens of
millions of integrals at each iteration.

It is easy to see why the CI step is time consuming. Although the
Fock matrix 1s only n x n, the size of the Cl matrix goes more like nal
Now the CI matrix is very sparse, as indeed it has to be, 1if we are to
get some of the eigenvectors and eigenvalues of matrices which can get
to be as large as 10000x10000, Most of the electronic structure work at
LASL 1is conceitrated on the CDC 7600 machines. We are currently adapting
our programs to use the CRAY machines efficiently, but it appears the
CRAY's will not be more than 10 times es powerful as a 7600. It isn't
bard to think of problems which would overwhelm the CRAY's,

In Fig. 3, we consider a few problems of interest to the structure
chemist in the area of transition metal chemistry. The molecules we
consider here are of interest for their bonding properties and their
¢lectronically excited states. The Re261; ion has a strong (almost
quadruple) Re = Re bond -- we estimate that we can do a fair job of
determining the energy of this ion with about 1/2 hour of CRAY time,

using about 100 orbitals in a split-valence basis. Not all the electrons




in this system would be treated explicity. At LASL, we regularly treat
large Z atoms using effective core pctentials to eliminate the innermost
core electrons from the culculation.1 Using about 250 orbitals, we ran
treat this mixed-valence richenium-pyrazine complex. This complex 1s of
interest because of its metal-organic bonding and the fact that the two
ruthenium atoms are not equivalent to each other, even at the Hartree-
Fock level. Of interest also is this bridged rhodium complex, which we
estimate we can tackle with about 350 orbitals. This molezule has the
intercsting property that, when dissolved in water, it liberates hydro-
gen gas in the presence of sunlight. This would be a very tough problem,
even for the CRAY —- we estimate 60 hours of CRAY time to determine the
structure,

One of the more relevant duties of the structure chemist is to
provide potential energy surfaces to the chemical dynamicist. The
potential energy suvface 1s determined by computing the electronic
energies of the molecular system as a function of the nuclear geometry.
In addition, if several electronic states participate in the collision
dynamics, it may also be desirable to have available certain matrix
elements between electronic surfaces. Now dynamicists tend to be
rather demanding -- at least by request of not also by need. Consequently,
we arrive at this first law of potrntial surface calculations -- the
structure chemist gets bored with running his program long before he can
satiate the dynemicist. (Paraphrased from Fig. 4.) But look what
happens ~-~ even if the dynamicist compromises to the point that he
settles for 10 points per nuclear degree of freedom, it nevertheless
requires a bundle of atructure calculations to penerate a surface for a

relatively simple A+BC type reaction, Now suppose we had a dynamicist



who dared to study a four-body reaction, like AB+CD. Then imagine a
structure chemist willing to compute a million points on a potential
surface. It shouldn't be surprising that there is at present only one
potential surface which has been computed at enough points and enough
accuracy to satisfy the dynamicist -- the simplest of all neutral molecular
systems -- the H+H2 surface computed by Bowen Liu and Per Siegbahn.2
Because of the high symmetry of this system, they have calculated a

surface at about 250 points (instead of the 1000 estimated).

III. QUANTUM CHEMICAL DYNAMICS

Let's now turn our attention to the requirements of the chemical
dynamicist. Here we consider only quantum mechanical approaches to
chemical reaction dynamics, and only mention that there also exists
a considerable computational technology which treats chemical dynamics
by using classical mechanics.

The only type of chemical reaction we are likely to ever be able to
solve rigorously in a quantum mechanical way is a three-body reaction of
the type A+BC + AB+C. (See Fig. 5.) The input information to the
dynamicist is the potential energy surface computed by the quantum
structure chemist., Given this potential surface, we treat the nuclear
collision dynamics using Schrodinger's equation to model the chemical
reaction process.

As was mentioned earlier, there is only one fuily ab initio poten-
tial energy surface for chemical reaction available to the dynamicist.
Thicr surface ie¢ appropriate for au A+BC reaction where A,B, and C are
all three hydrogen atoms ur hycrogen isotopes (H,D,T). VFig. 6 shows a
contour map of the colllnear part of this surface (all three nuclei lie

on a single line); the essential features of the surface topology are



the entrance valley, the product valley, and the activation barrier
separating these two valleys. Motion perpendicular to each valley
corresponds to vibration of the reactant or product molecule, and motion
parallel to the floor of the valley measures progress of the reaction,
from reactants to products. The classical mechanical solution t, chemical
reaction dynamics in accomplished in fact by solving for the motion of a
point mass particle on this hypersurface. Reaction corresponds to a
trajectory which starts out in the reactant valley, crosses the barrier,
and ends moving out into the product valley.

Quantum mechanically, the reactive dynamics 1is expressed in a more
wavelike language. By solving Schrodinger's equation, we treat the
problem where an initial probability wave of reactants is sent in towards
the activation barrier from reactants. When the wave hits the barrier,
part of it is reflected and part of it is transmitted. The reflected
part of the wave corresponds to non-reactive collision events, and the
transmitted part corresponds to reaction.

The actual equations we solve are called the close-coupled equatioms.
(See TFig. 7.) They are obtained from the Schrodinger equation in the
following way: (1) we first define all but one of the coordinates of
the system to be "target" coordinates and the final coordinate is called
the "scattering cooriinate" or "reaction coordinate.'" The reaction
coordinate tells us where we are in our journey along the potential
surface from the reactant va'ley towards the product valley., Basis
functions are defined which describe motion iu all the target coordi-
nates. Thase basis functions are square integrable for the target
coordinate degrees of freedom, but the function which describes motion

in the reaction coordinate is determined numerically. The equations



for these scattering functions are the close-coupled equations. These
equations are a set of coupled second order linear ordinary differential
equations. The difficulty in solving problems in quantum chemical
dynamics is simply this -- how many coupled equations are there? The
answer is that there is one equation for every ''channel” in the close
coupling expansion.

Each channel is defined by a 'mnique set of quantum numbers for the
target degrees of freedom. There are five such labels for each channel.
They are (1) J -- the total angular momentum and (2) M, its projection
on an axis fixed in space. 1In addition there are labels (3) n for the
vibrational motion of the molecule, (4) i for the mole-ular rotational
degree of freedom, and (5) £ for the atom-molecule orbital ar.gular
momentum. The equations for one set of (J,M) are uncoupled from equations
for other values of (J,M). The equations for a function labeled by one
value of (n,j,L) are coupled to values of all the other functions labeled
by (the same or) different values of (n,j,2). The number of coupled
equations we have to sclve therefore depends cn the number of molecular
vibration-rotation states we have to treat in the scattering dynamics a:
each collision energy.

In the next paragraph. we present a rudimentary look at the algo-
rithm we use to solve these coupled equations. This method is called
R-matrix propagation;3 and although there are several other methods
equally capable of solving the coupled equations, we use R-matrix
propagation as an example because it illustrates the kind of computer
algorithms we require. The R-matrix itself contains the scattering
information we need; the final R-matrix is assembled in a recursive

fashion using the analytic solution of the scattering problem over a



small region of the scattering coordinate. The algorithm works in the
following way: given (1) an old R-matrix assoclated with the solution of
the scattering probiem over one region of space; and given (2) a sector
R-viatrix which defines the scattering solution over a small incremental
region of space, we can (3) assemble a new R-matrix which is associated
with the solution of the scattering problem over the (old + incremental
= new) region of space. The recursion equation i1s a matrix equation of
order n,

R, = r,, + r,. (R, +r )-1r

~2 ~22 217212117 (12
where there are n channels in the close-coupling expansion of the wave-
function. As you can see, this recursion formula involves very standard
matrix operations —-- multiplication and inversion. The analytic solution
of the coupled equations in the incremental region is defined in terms
of the eigenvalues and eigenvectors of the coupling matrix. So you can
see that the basic numerical algorithm we require our supercomputer to
handle effectively are standard matrix operations -- multiplicationm,
diagonalization, and inversion. All these algorithms go asymptotically
as n3 -- and so the complexity of the quantum dynamics' problem is
measured (as we saild previously) by the size (n) of the close coupled
equations.

So let's return our attention again to the question of the size of
the coupled equations and consider some examples. Many of the chemical
reactions we are interested in are dominated by an activation barrier
which scparates the reactant and product valleys of the potential energy

hypersurface. (See Fig. 8.) The energy of this activation barrier



locates the general energy range-of interest to the reaction A~ .micist --
because there isn't very much reaction at energies below the barrier
height, where only quantum tunnelling processes can contribute to reaction.
But, as we show schematically in Fig. 8, there may be several molecular
energy states below the activation barrier. All these states, at the
very least, must be included in the 1lose coupling expansion.

Let's now consider several examples. The simplest of all reactions
is the H+H2 reaction. The H2 vibrational levels are fairly widely
spaced, but we must also include the rotational manifold of levels
associated with each vibrational level. (See Fig. 9.) Now, it is this
rotational manifold of levels (and the degeneracies of states associated
with each vibration-rotation level) which ultimately breaks the bank in
the size of the close coupling expansion.

In order to treat quantum dynamical problems, it will be necessary
to introduce approximaticus which reduce the size of the set of coupled
equations. Two promising approximations are the centrifugal sudden
(CS)Z"5 approximation and the infinite order sudden (I0S) approxima-

5,6

tion. The CS approximation removes the coupling between the j and

£ angular momenta, thereby reducing the size of the coupled equations
from n to approximately nl/z. In this approximation, each (n,j) energy
level generates only one channel instead of (2j+1) channels. The more
drastic I0S approximastion appears to be promising for systems in which
the molecular gpecles rotates very slowly on the scale of the collision

time. This approximation removes in effect all the rotational levels

from the system.



For the H+H2 system, wt estimate that we can just about solve this
cagslesat of all problems with current state-of-the-art computers rt rhe
100-channel level. 1If we can use the CS approximation for this system,
we can In fact go to quite high scattering energies.

But remember that H+H2 is the simplest of all reactions. Moving
more in the direction of true chemistry, consider next a reaction for
which only two nuclei are hydrogens (instead of three) -- the F+H2
reaction. This reaction is over 1 eV exothermic in going from the
reactant valley, over a small (1 kcal) barrier, to the product valley.
The exothermicity of reaction means that rhere are several energetically
accessible (open) vibrational channels for this system even at the
“hrestold for reaction. If we include all the rotational levels with
each vibration, and the proper (2j+1) rotational degeneracies, we have
an unthinkably large number of (oupled equations to solve -- over
1200 channels. (See Fig. 10.) 'To solve this problem, we must use
aprroximations such as the C3 approximation, which reduces the problem
to the much more . ‘nageable 100-channel level.

For our final quantum dynamics example, consider what happens
when we substitute a lithium atom for one of the remaining hvdrogens --
the Li+FH reaction. (See Fig. 11.) This semiempirical potential surface
(ccllinear) shows a narrow antrance channel vibrational vailey, a shallow
well in the entrance chanuel, a barrier, and a broad product vibrational
valley. Even using the CS approximation, the energy level diagram for
this reaction makes this problem accessible only to the full power of a
CRAY level machine. Anyone foolish enough to tackle the problem rigor-

ously will have to face a 10000-channel system at energics just ‘bove

threshold!



The moral of our story of the quantum rhemical reaction dynamicist
should be perfectly clcar -~ at least twWo bvdrogens arc the dynamicists
best friend. Indecd, our current supercomputers mav seem to be a bhit
less super,

IV, QUANTUM OPTICS

The interaction of molecules with electromagnetic radiation {s of
fundamental interest to the chemist. When the electromagnetic field is
relatively weak, we can describe these interactions using perturbation
theory, The study of single photon transitions induced between molecular
states by weak fields is the province of the molecular spectroscoplist.
But now, with the ever more powcrful radiation fields available from
laser technologv, we are in a position to study the interaction between
molecules and e¢lectromagnetic radiation at intensities too large for
perturbation methods to work, The somewhat broader field of quantum
optics seeks to describe the time evolution of molecules in the presence
of these intense fields. Of course, before we can follow the migration
of energy among the various degrees of freedom of a (possibly large)
molecule, we must first know what the electronic, vibrational, and
rotation energy states of the molecule are i1 the absence of any radiation
field. The effect of the field is to move population from the {unitial
molecular state into other molecular states in a time dependent way.

The solution of this problem can be obtained by solving the time-
dependent Schrodinger equation, so 1ung as the molecule we are studying
is modeled at zero pressure. At finite pressures (when collisions are
present) the Schrodinger picture is too difficult to solve directly; in
this case, we can model the incoherent (phase destroying) effecte of

collisions upon the coherent excitation induced by the electromagnetic



field by resorting to a Bloch equation (or density matrix) formalism.
Collisions are modelled by decay ratea not only in the diagonal (but
also the off-diagonal) terms of the density matrix. We also have one
further consatraint in developing methods to treat problems in quantum
optica -- because laser pulses last for » relatively long time in com-
parison to the time associated with molecular vibration and rotation, we
must solve our time~dependent Schrodinger or Bloch equation in a vay
which givea answers efficiently for long times.

Conaider for a moement the Bloch equation for the density matrix, o,
1) = pH - Hp - 11

The Bloch equation gives the time derivative of the denmaity matrix o

in terms of {ts commutator with Lhe Hamiltonian for the system, and the
decay rate matrix Y. Fach of the matriceJ, s E. and E are n x n matrices
if we consider a molecule with n vibration-rotation states, We solve

thls equation by rewriting the n x n square matrix n as an nz-element
column vector. Rewriting 0 in this way tranaforme the g and E matrices

into an n2 x n2 complex gencral matrix R. We obtain

- R‘)

—

1D e

The solution of thc tranaformed equaticn is obtained by exponentiating
thins E matrix. To efficiently exponentiate this matrix we must first
diagonalize it, exponentiate the eigenvalues, and back transform with
the eigenvectors. This back transformation procedure is repeated for

every time at which we wish to know the molecular populations.



A typical problem of {ntcreat at Los Alamos 1ia the molution of the
infrared multiple photon excitation dynamics of sulfur hexafluoride.
This very problem has been quite popular in the literature in the past
few vsars.7 The solution of thia problem is modeled h; A molecul ar
Hamiltonian which exnlicitly treats the asvmmetric stretch V' ladder of
the molecule coupled implicitly to the other molecular degrees of freedom.
(See Fig. 12.) We consider the the firat scven vibratlonal dtates of the
vJ mode of SF6 (6v]); the octahedral symmetry of the SFﬁ moleculce maken
these vibrational levels degenerate, and coupling betwcen vibrational
and rotational motion splits these degeneracie: slightly. Furthermore,
there is a rotational manifold of states associated with cach vibrational
level. Even to describe the zeroth-order level states of this molecule
1s itself a fairly complicated problem. Now if we werce to include
collisiona in our model of multiple photon excitation of SFG' we would
have to golve a matrix Bloch equation with a minimum of 862 X 842
elements. Clearly such a this problem is beyond our current abilities,
80 in fact we neglect collisional effects in order to utay with a
Schrodinger picture of the excitation dynamics.

In the Schroringer picture, we can include the diagonal elements
of the I' matrix, which model the coupling of Lhc explicitly treated
vJ-ladder states with the other implicitly treated moleccular states.
The exponentiation of the coupling matrix in the Schrodinger picture
requires the diagonalization of an n x n complex general matrix.
Populations at several times are computed by t:ie back tranaformation
method, and a quadrature over time of those populations gives the leakage

of amplitude into the SF6 quianicontinuum degrees of freedom. This whole

procuss is repeated for each new initial rotational state Jo' lager



frequency v, and laser intensity I. Our calculations at LASL can require
up to 10 hours of 7600 time for each laser power of interest.
There are several other interesting topics in quantum optics which
we would like to be able to studv. For example, we would like model
problems in double resonance spectroscopy, where there arc two electromagnet{c
ficlds with possibly different polarizations simultaneously interacting
with a molecule, Thisr problem resembles the multiple photon excitation
problem in that there {s population migration along ladders of states,
but in this casc there can be a vastly larger number of quantum levelr
to treat =- on the order of 2(2J41). At room temperature, the mnst

probable value of J for SF, is about 60, which impliems a 250 state

6
calculation,

Finally, we also mention a substantially more complex problem --
that of laser pulde propagation through an abrorbing medium. In this
case wve arce asking not only what happens to the molecule in the presence
of an electromagnetic field, but also what happens macroamcopically to
the field in the presence of the molecule. The solution of this problem
requires treating the multinle photon dynamics problem self-consistently
with u solution of Maxwell's ation over a grid of points in space.

V.  CONCLUSIONS

In summary, our intention has becn to give examples of the types of
problems we are intereated in at LASL. Our appetite for computationally
difficult problems has not been dulled by the current availability of
computer resources. In the area of molecular electronic structure
calculationa, we need computers for which there can be written efficient

algorithms to diagonalize large matrices, and in the case of CI

calculations, we need efficient indirect addreseing capabilities (pather-



scatter operations) in order to process these matrices whore elementr

are 992 zeroes. Either we need efficient 10 capabilities in order to

process the liatas of millions of {integrals, or it has to be cheaper to
calculate these integrals as we go along.

In the area of quantum dvaamics, we need again computers capable of
efficiently performing standard tvpes of matrix operations (Inversion,
diagonalization, multiplication) on large matrices of the order of
several hundreds,

And in the area of quantum optics, we need similar types of capa-
biitties ~ standard matrix mauipuliations - but now our matrices are
complex general instead of real symmetric.

In cach of the fields discussed here, state-of-the-~art calculations
require the full capabilities of modern computers, Newer supercomputers
will need to be several orders of magnitude more powerful to efficiently

attack many of the problems currently facing the theoretical chemist.
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Figure Captions

Fig. 1. Schematic represcentation of three areas of theoretical chemistry.
We will consider the relationship hetween each of these areas

and the modern supercomputer.

Fig. 2. Computational requirements for molecular electronic structure
calculations.

Fig, 3. Examples of problems in transition-metal chemistry.

Fig. 4. Potential energy surface calculations for the chemical dynam-

icist.
Fig. 5. Quantum chemical dynamics. Scope and method of currently
tractable problemns.

Fig. 6. Contour map of the H+H, collinear chemical potential energy

2
surface,
Fig. 7. How close coupled ecquations are obtained in chemical dynemics
problems.
Fig. 8. Schematic representation of chemical potential energy surface.

Counting of states helow reaction barrier for both reactants
and products gives a minim.l estimate of numbers of coupled
equations to be solved.

Fig. 9. Counting of channels for the H3 reaction. Reaction bharrier
is at 0.4 eV; state-of-the-art calculations are performed to
slightly above 1 eV. Arrows are drawn whenever another 100
coupled channels are required.

Fig. 10. Counting channels for the FH2 reaction. As in Fig. 9, except
arrows count states for (S approximation (each vibration-rota-

tion level counts on'y once). Reaction threshold is at 1,65 eV.



Fig. 11.

Fig. 12.

Counting channels for the LiFH reaction. As in Figs. 9-10,
arrows count states for CS approximation. Reaction threshold
near 0.6 eV.

Schematic of multipie photon excitation dynamics of SFG.
Groups of levels show lowest three Vg vibrational states.

Higher states are split by rotational interactions with vi-

brational motion.
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Computational Requirements

® Let n = § atomic basis functions

Limits
Matrix Size 7600 CRAY-1
Fock nxn 100 300
2e [ n‘/8 107 10°
CI ~ n*xn* 10* 10°




Problems in Transition-Metal Chemistry

Estimated
Molecule n° CRAY time (hrs)
ReCls® 104 05
[[(NHy)sRuk-pyrazine* 252 20
[Rh—(NC—C3He—CN)(—RhF* 340 60

°split—valence basis usring effective potentials
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. Potenticl Surfaces for Comical Dynamics

Law of Nature: Dynamicists will always want
more points on a potential energy surface
than one is willing to calculate.

Response of Electronic Structure Practitioners:
Dynamicists will usually settle for
10 points / degree of freedom.

Points
Triatomics 103
Tetratomics 108
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Quantum Chemical Dynamics

® A+ BC-» ABC->A-B+ZC

® Requires poter:itial energy surface(s) from
electronic structure calculations

® Solve Schrodinger equation for dynamics

HY = E¥




CONTOURS FOR THE SLTH — HHH POTENTIAL SURFACE

r (c)

R (a)




Close-Coupled Equations

@ Separate all (3N-3) coordinates into
one scattering coordinate and (3N-3)-1
internal coordinates

® Expand wavefunction using square integrable
basis functions for (3N-3)-1 coordinates
and sclve numerically for function of
scattering coordinate.

® Leads to a set of coupled linear second order
difierential equations. One equation
for each “channel”




How Many Coupled Channels are There?

—

® Reactions are dominated by activation barriers

Activation Barrier

S
&
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Products

REACTION COORDINATE
® Need all open channels, some closed channels
® State of art = 100 channels (CRAY = 300)
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F + H, Energy Levels
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Multiple Photon Excitation (SF,)

® SFe + Nhv + M — SF¢' + M

@® Asymmetric stretch (vy) ladder dynamics

@ Vibrational degeneracy is S5(N+1XN+2)

@® Include up to 6vy in H, get
849884)matrix. to dla:onallze
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